The Neel to Bloch domain wall phase transition in ferromagnetic strips

Kirill Rivkin, Konstantin Romanov, Yury Adamov, Artem Abanov, Wayne Saslow, Valery Pokrovsky
Statement of the problem

The transition from Neel domain wall to Bloch domain wall in ferromagnetic strips type I or type II phase transition?

Micromagnetical approach

Analytical approach

Type II phase transition
Outline

- Domain walls in ferromagnets
- Results of micromagnetical calculation
- Analytical description
- Comparison
Ferromagnetic Hamiltonian

The energy of the magnetization distribution in ferromagnet:

\[W[\vec{M}(\vec{r})] = W_{\text{ex}}[\vec{M}(\vec{r})] + W_{d-d}[\vec{M}(\vec{r})] + W_{a}[\vec{M}(\vec{r})] \]

The exchange energy:

\[W_{\text{ex}} = A \int \left(\nabla \cdot \vec{M}(\vec{r}) \right)^2 d\vec{r} \]

The dipole-dipole energy (the magnetic field energy):

\[W_{d-d} = \iint \frac{1}{|\vec{r} - \vec{r}'|^3} \left(3 \frac{(\vec{M}(\vec{r})(\vec{r} - \vec{r}'))(\vec{M}(\vec{r}')(\vec{r} - \vec{r}'))}{|\vec{r} - \vec{r}'|^2} - M(\vec{r})M(\vec{r}') \right) d\vec{r} d\vec{r}' \]

The anisotropy energy:

\[W_{\text{ex}} = \int F(\vec{M}(\vec{r})) d\vec{r} \]
Domain wall

Large DD energy

Large exchange energy
Domain walls in strip

$L \gg w \gg h$

\[
\frac{l_{ex}^2}{hw} \ll 1
\]

\[
l_{ex} = \sqrt{\frac{A}{2 \pi M_s^2}}
\]
Domain wall types

- Neel domain wall
- Bloch domain wall
Limit of thin samples

\[W_{d-d} = W_{d-d, \text{faces}} + W_{d-d, \text{sides}} \]

\[W_{d-d, \text{faces}} \sim h \langle M_z^2 \rangle \]

\[W_{d-d, \text{sides}} \sim h^2 \langle M_x^2 \rangle \]

Magnetization lies in plane x-y — Neel domain wall
Neel domain wall

Magnetization rotates around z-axis. Magnetization is uniform along y and z.

\[\vec{M}(\vec{r}) = \vec{M}(x) \]

Bloch domain wall

Thick samples. Rotation around in-plane axis.

Phase transition

Small thickness
- Neel wall

Large thickness
- Bloch wall

Phase transition
Micromagnetical Simulation

\[A = 1.3 \times 10^{-6} \text{ erg/cm} \]

\[M_s = 795 \text{ emu/cm}^3 \]

\[l_{ex} = 5.7\text{ nm} \]

\[h = 1\text{ nm} - 50\text{ nm} \]

Calculated the lowest energy state with domain wall at different thicknesses of the strip.

Found the spectrum of oscillations and the lowest frequency oscillation.

K. Rivkin
Mode frequency goes to 0 at some thickness.

Micromagnetic simulation (K. Rivkin)

Mode — oscillations of the domain wall central part.
Micromagnetics results

- Mode performs shifting of Neel wall center along x
- The transition Neel wall to asymmetric Bloch wall occurs.

Cross-section y=const (K. Rivkin)
Symmetry of Neel wall

Magnetization distribution in cross-section $y=\text{const}$

Mirroring symmetry

\[M_x(x, z) = M_x(\pm x, \pm z) \]
\[M_y(x, z) = -M_y(-x, z) \]
\[M_y(x, z) = M_y(x, z) \]

Micromagnetic simulation (K. Rivkin)
Symmetry of asymmetric Bloch wall

Central symmetry

\[M_x(x, z) = M_x(-x, -z) \]
\[M_y(x, z) = -M_y(-x, -z) \]
\[M_z(x, z) = M_z(-x, -z) \]

Magnetization distribution in cross-section y=const

Micromagnetic simulation (K. Rivkin)
Transition mode symmetry

Neel wall + transition mode

= asymmetric Bloch wall

Mode symmetry - Mirroring symmetry

\[
M_x(x, z) = -M_x(-x, z) \\
M_x(x, z) = -M_x(x, -z) \\
M_y(x, z) = M_y(-x, z) \\
M_y(x, z) = -M_y(x, -z) \\
M_z(x, z) = M_z(\pm x, \pm z)
\]
Neel domain wall shape

Micromagnetical calculation in the limit of thin samples. (K. Rivkin)

\[M_x(x) = \text{sech}\left(\frac{x}{\delta}\right) = \frac{1}{\cosh\left(\frac{x}{\delta}\right)} \]

\[M_y(x) = \text{th}\left(\frac{x}{\delta}\right) \]

\[M_x(x) = \Lambda \left(\cos\left(\frac{x}{w}\right) \text{ci}\left(\frac{x}{w}\right) + \sin\left(\frac{x}{w}\right) \text{si}\left(\frac{x}{w}\right) \right) \]

\[M_y(x) = \text{sign}(x) \sqrt{1 - M_x(x)^2} \]

\(\delta \) — the half-width of domain wall center

Central region

Region of tails

K.Rivkin et. al., submitted
Mode magnetization

Neel domain wall magnetization:

\[M^0(x) = (u(x), v(x), 0) \]

The mode should be orthogonal to the initial solution

\[\mu(x, z) = (\lambda(x, z)v(x), -\lambda(x, z)u(x), \zeta(x, z)) \]

Mode shifts center of Neel domain wall:

\[\lambda(x, z_0)v(x) \sim \frac{d}{dx}u(x) \]

\[\lambda(x, z_0)u(x) \sim \frac{d}{dx}v(x) \]
Mode magnetization

\[
\mu(x, z) = \left(\lambda(x, z) v(x), -\lambda(x, z) u(x), \zeta(x, z) \right)
\]

Two z harmonics are taken

\[
\lambda = \text{sech} \left(\frac{x}{\delta} \right) \left(\lambda_1 \frac{2z}{h} + \lambda_3 \left(\frac{2z}{h} \right)^3 \right)
\]

\[
\zeta(x, z) = \text{sech} \left(\frac{x}{\delta} \right) \left[2 \text{sech} \left(\frac{x}{\delta} \right) - 1 \right] \left(\zeta_0 + \zeta_2 \left(\frac{2z}{h} \right)^2 \right)
\]
Critical condition

$$W_{[\lambda, \zeta]} = W_0 + \left(\lambda_1, \lambda_3, \zeta_0, \zeta_2 \right)^T M \left(\lambda_1, \lambda_3, \zeta_0, \zeta_2 \right) + \ldots$$

The second correction to the energy is 0.

$$W_{mode}[\lambda, \zeta] = \left(\lambda_1, \lambda_3, \zeta_0, \zeta_2 \right)^T M \left(\lambda_1, \lambda_3, \zeta_0, \zeta_2 \right)$$

Main contribution is from dipole-dipole energy.

Exchange energy is not sufficient at small exchange lengths

$$l_{ex} = \sqrt{\frac{A}{2 \pi M_s^2}}$$

Critical point condition

$$\det \left[M \right] = 0$$
Critical thickness

\[\delta \approx 0.4 h_c \]
Comparison

Transition points (micromagnetics)

Theoretical value

\[\delta \approx 0.4 h_c \]

\[h_c \approx 2.5 \delta \]

\(\delta \) — domain wall central part width, \(h \) — thickness of the strip
Free Energy

Transition mode vector:

\((\lambda_1, \lambda_3, \zeta_0, \zeta_2) = \eta (0.38, 0.7, 0.66, 0.27)\)

Energy expression

\(W_{\text{mode}}(\eta) = \eta^2 0.3 M_s^2 L h^2 \left(\frac{\delta}{h} - \frac{\delta}{h_c} \right) + 0.008 \eta^4 M_s^2 L h^2\)
Conclusions

- Analytical and micromagnetical description of Neel domain wall to asymmetric Bloch domain wall type II phase transition.
- The relation between critical thickness and Neel domain wall center width is obtained.